Thursday, 25 July 2013

Nash Equilibrium

NASH EQUILIBRIUM

The Nash equilibrium was named after John Forbes Nash.
In game theory, the Nash equilibrium is a solution concept of a non-cooperative game involving two or more players, in which each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only their own strategy unilaterally. If each player has chosen a strategy and no player can benefit by changing strategies while the other players keep theirs unchanged, then the current set of strategy choices and the corresponding payoffs constitute a Nash Equilibrium.
Informally, a set of strategies is a Nash equilibrium if no player can do better by unilaterally changing his or her strategy. To see what this means, imagine that each player is told the strategies of the others. Suppose then that each player asks himself or herself: "Knowing the strategies of the other players, and treating the strategies of the other players as set in stone, can I benefit by changing my strategy?"
If any player would answer "Yes", then that set of strategies is not a Nash equilibrium. But if every player prefers not to switch (or is indifferent between switching and not) then the set of strategies is a Nash equilibrium. Thus, each strategy in a Nash equilibrium is a best response to all other strategies in that equilibrium

Game theorists use the Nash equilibrium concept to analyze the outcome of the strategic interaction of several decision makers. In other words, it provides a way of predicting what will happen if several people or several institutions are making decisions at the same time, and if the outcome depends on the decisions of the others. The simple insight underlying John Nash's idea is that one cannot predict the result of the choices of multiple decision makers if one analyzes those decisions in isolation. Instead, one must ask what each player would do, taking into account the decision-making of the others.
Things we need to know:
Players (Decision Makers)
Actions
Payoffs
Matrix and trees (not important)

Examples:
Prisoner’s Dilemma(the single nash equilibrium)
Zero Sum Games(coin tossing, the infinite)
Crossing a Street(dual solution)
The Game of Averages(stock prices)
Rock Paper Scissors(zero sum game)

Will be explaning everything with examples.

Sohoum Biswas, Presidency University

No comments:

Post a Comment